COSMOVIA Lectures

Virtual Institute of Astroparticle physics
Paris, July 5, 2019

On dark stars, galactic rotation curves and fast radio bursts

Igor Nikitin

Fraunhofer Institute for Algorithms and Scientific Computing
Sankt Augustin, Germany

Content

Short introduction to General Relativity

Models of compact massive objects

- dark stars
- wormholes
- white holes
- Planck stars

RDM-stars

Comparison of RDM-model with experiment

- fast radio bursts
- galactic rotation curves
- arXiv:1701.01569
- arXiv:1812.11801
- arXiv:1903.09972

Dark Stars

- also known as quasi black holes, boson stars, gravastars, fuzzballs ...
- solutions of general theory of relativity, which first follow Schwarzschild profile and then are modified
- outside are similar to black holes, inside are constructed differently (depending on the model of matter used)
- review of the models: Visser et al., Small, dark, and heavy: But is it a black hole?, arXiv: 0902.0346
- our contribution to this family: RDM stars (quasi black holes coupled to Radial Dark Matter)

Stationary solution, including T-symmetric supersposition of ingoing and outgoing radially directed flows of dark matter

Galactic model with radial dark matter

- The simplest model of a spiral galaxy
- 30kpc level (for MW)
- Dark matter flows radially converge towards the center of the galaxy
- The limit of weak gravitational fields, one-line calculation: $\rho \sim r^{-2}, M \sim r, v^{2}=G M / r=$ Const
- Qualitatively correct behavior of galactic rotation curves (asymptotically flat shape at large distances)
- The orbital velocity of the stars and interstellar gas consisting of Kepler and constant terms
- Q1: What is happening in the center of the galaxy? (requires the calculation in the limit of
 strong fields)
- Q2: How to describe the deviation of rotation curves from the flat shape? (the model of distributed RDM-stars will be considered)

"Ordinary" black hole

- Schwarzschild solution
- spherical coordinate system
- $r=r_{0}$ - Event Horizon
- after crossing the horizon A, B reverse sign, r, t roles are interchanged
- radial movement toward the center becomes equivalent to the increasing time
- => material objects fall onto central singularity
- above the horizon A-profile controls slowdown of time and the wavelength shift ($0<A<1$ red, $A>1$ blue); B - the deformation of the radial coordinate, D - deformation angular coordinates

$$
\begin{array}{r}
A=1-r_{0} / r, B=A^{-1}, D=1 \\
d s^{2}=-A d t^{2}+B d r^{2}+D r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
\end{array}
$$

metric, the square of the distance between points in the curved space-time

The Wormole

- type MT (Morris-Thorne model)
- no event horizon
- a tunnel connecting 2 universes or 2 sites of a single universe
- requires exotic matter ($\rho+p<0$)
- $B \rightarrow \infty, A>0$ is finite, L is finite

$$
L(r)=\int d r \sqrt{B(r)}
$$

- a specific example:

$$
A=1-r_{0} / r+\alpha / r^{2}, B=\left(1-r_{0} / r\right)^{-1}, D=1
$$

White hole on Penrose diagram

collapse of a star into a black hole (Oppenheimer-Snyder model)
$r=0$ star surface
the eruption of a white hole (Lemaître-Tolman model)

$r=0$, the singularity

Planck stars

- Planck density: $\rho_{\mathrm{P}}=\mathrm{c}^{5} /\left(\hbar \mathrm{G}^{2}\right)=5 \times 10^{96} \mathrm{~kg} / \mathrm{m}^{3}$
- straightforward estimation for the Planck density core of $R=10 \mathrm{~km}$ radius, the mass $M=(4 / 3) \pi R^{3} \rho_{\mathrm{P}}=2 \times 10^{109} \mathrm{~kg}$, gravitational radius: $\mathrm{Rs}=2 \mathrm{GM} / \mathrm{c}^{2}=3 \times 10^{82} \mathrm{~m}$, compare to the mass and radius of the observable universe Muni $=10^{53} \mathrm{~kg}$, Runi $=4 \times 10^{26} \mathrm{~m}$ (such a star will immediately cover the universe by its gravitational radius, with a large margin)
- however, quantum gravity (QG) gives a correction to the density: $\rho_{x}=\rho\left(1-\rho / \rho_{p}\right)$
- $\rho=\rho_{\mathrm{P}}=>\rho_{\mathrm{x}}=0$ at Planck density the gravity is switched off
- $\rho>\rho_{\mathrm{P}}=>\rho_{\mathrm{x}}<0$ in excess of Planck density the effective negative mass appears (exomatter), gravitational repulsion (antigravity)
- the models: Rovelli-Vidotto (2014), Barceló et al. (2015)
- for an external observer strong grav. time dilation is applied
- estimation of the re-collapse time depends on the size, $t \sim 13.8$ bln.years for microholes of $r \sim 2 \times 10^{-4} \mathrm{~m}$

- (one of the possible mechanisms of fast radio bursts)
- QG bounce: collapse replaced by extension, black hole turns white

General theory of relativity, a brief introduction

- spacetime - 4D manifold
- x^{μ} - arbitrary coordinates, e.g., linear Minkowski, or curved spherical, cylindrical, etc.
- $g_{u v}(x)$ - the metric tensor
coordinate-dependent symmetric 4×4 matrix
eigenvalues of signature (+++ -) 3 space coords + 1 time
- $g^{u v}(x)$ - inverse matrix
- squared distance between points in a general form: $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$
- summation over repeated indices everywhere assumed
- indices: subscript - covariant, superscript - contravariant
- raising / lowering index operations, tensor transformation rules under change of coordinates:

$$
\begin{aligned}
& u_{\mu}=g_{\mu \nu} u^{\nu}, u^{\mu}=g^{\mu \nu} u_{\nu}, G_{\mu \nu}=G^{\alpha \beta} g_{\alpha \mu} g_{\beta \nu} \\
& g_{\alpha \beta}(y)=g_{\mu \nu}(x) J_{\alpha}^{\mu} J_{\beta}^{\nu} \quad J_{\alpha}^{\mu}=\partial x^{\mu} / \partial y^{\alpha}
\end{aligned}
$$

General theory of relativity, a brief introduction

General theory of relativity, a brief introduction

Einstein eqs: relate gravitational field to the distribution of matter

$G^{\mu \nu} \stackrel{\swarrow}{=} 8 \pi G / c^{4} \cdot T^{\mu \nu}, u^{\nu} \nabla_{\nu} u^{\mu}=0, \nabla_{\mu} \rho u^{\mu}=0$

=> self-consistent PDE system
geodesic eqs: relate matter distr.
to the gravitational field

$$
4 \pi G=1, c=1 \quad \begin{aligned}
& \text { Geometric System of Units } \\
& \text { (sometimes } G=c=1 \text { are chosen) }
\end{aligned}
$$

matter distribution in the RDM model: the energy-momentum tensor

$$
T^{\mu \nu}=\rho\left(u_{+}^{\mu} u_{+}^{\nu}+u_{-}^{\mu} u_{-}^{\nu}\right), u_{ \pm}=\left(\pm u^{t}, u^{r}, 0,0\right)
$$

$$
\text { mass density > } 0
$$

radial velocity flows: incoming / outgoing
Note: steady-state solution requires energy balance of the flows

- zeroing total energy flux through r-spheres: $T^{\mathrm{tr}}=0$
- satisfied in the particular case with T-symmetric flow, above
- (Necessary to investigate): general case

Derivation of RDM equations, computer algebra

Algorithm Einstein(n, x, g):

- complex calculations, for example, Riemann tensor $4^{4}=256$ components
- substitution, differentiation, algebraic simplifications
- convenient to use a system of analytical computations
- example calculation in Mathematica

```
ginv = Simplify[Inverse[g]];
                            (* Inv.metr.tensor *)
gam = Simplify[ Table[
    (1/2)*Sum[ ginv[[i,s]]**(D[g[[s,j]],x[[k]]]
        +D[g[[s,k]],x[[j]]]-D[g[[j,k]],x[[s]]]),
    {s,1,n} ],
    {i,1,n},{j,1,n},{k,1,n}] ]; (* Christoff. symb. *)
R4 = Simplify[Table[
    D[gam[[i,j,l]],x[[k]]]-D[gam[[i,j,k]],x[[l]]]
    + Sum[ gam[[s,j,I]] gam[[i,k,s]]
        - gam[[s,j,k]] gam[[i,l,s]],
        {s,1,n}],
    {i,1,n},{j,1,n},{k,1,n},{l,1,n} ] ];
R2 = Simplify[ Table[
    Sum[ R4[[i,j,i,I]],{i,1,n} ], (* Ricci tensor *)
    {j,1,n},{l,1,n}] ];
RO = Simplify[ Sum[
    ginv[[i,j]] R2[[i,j]],
    {i,1,n},{j,1,n} ] ];
G2 = Simplify[ R2 - (1/2) R0 g ] (* Einstein tensor *)
```


Derivation of RDM equations, computer algebra

- complex calculations, for example, Riemann tensor $4^{4}=256$ components
- substitution, differentiation, algebraic simplifications
- convenient to use a system of analytical computations
- example calculation in Mathematica

Algorithm geodesic(n,x,u,gam):

```
rhoeq = Simplify[
            Sum[u[[i]] D[rho[r],x[[i]]],{i,1,n} ]
    + rho[r] ( Sum[ D[u[[i]],x[[i]]], {i,1,n} ]
    + Sum[ gam[[i,i,k]] u[[k]],
        {i,1,n},{k,1,n}])
    ];
geoeq = Simplify[ Table[
    Sum[u[[j]] D[u[[i]],x[[j]]],{j,1,n} ]
    + Sum[ gam[[i,j,k]] u[[j]] u[[k]],
    {j,1,n},{k,1,n} ],
    {i,1,n}]]
```

$$
\begin{aligned}
& \left(u^{\nu} \partial_{\nu}\right) u^{\mu}+\Gamma_{\nu \lambda}^{\mu} u^{\nu} u^{\lambda}=0 \\
& u^{\mu} \partial_{\mu} \rho+\rho\left(\partial_{\mu} u^{\mu}+\Gamma^{\mu}{ }_{\mu \lambda} u^{\lambda}\right)=0
\end{aligned}
$$

Derivation of RDM equations, computer algebra

The result of substitutions, geodesic eqs for RDM:

$$
\begin{gathered}
\left(\rho u^{r}\right)^{\prime}+\left(4 / r+A^{\prime} / A+B^{\prime} / B\right) \rho u^{r} / 2=0, \\
\left(u^{t} A^{\prime} / A+\left(u^{t}\right)^{\prime}\right) u^{r}=0, \\
\left(u^{t}\right)^{2} A^{\prime}+\left(u^{r}\right)^{2} B^{\prime}+2 B u^{r}\left(u^{r}\right)^{\prime}=0,
\end{gathered}
$$

Analytical solution:

$$
\begin{array}{cc}
\rho=c_{1} /\left(r^{2} u^{r} \sqrt{A B}\right), & \begin{array}{l}
c_{1,2,3}-\text { integration consts, } \\
c_{1,2}>0, c_{3}=-1,0,+1
\end{array} \\
u^{t}=c_{2} / A, u^{r}=\sqrt{c_{2}^{2}+c_{3} A} / \sqrt{A B} &
\end{array}
$$

Derivation of RDM equations, computer algebra

Einstein's equations for RDM model

$$
\begin{gathered}
r A^{\prime}=-A+A B+4 c_{1} B \sqrt{c_{2}^{2}+c_{3} A} \\
r B^{\prime}=B / A\left(A-A B+4 c_{1} c_{2}^{2} B / \sqrt{c_{2}^{2}+c_{3} A}\right)
\end{gathered}
$$

in the limiting case $\mathrm{c}_{1}=0$, dark matter switched off, the analytical solution in the form of a Schwarzschild black hole
in general, there is no analytical solution (system solved numerically)

Mathematica NDSolve

The numerical solution of RDM equations

The numerical solution of RDM equations

details in the log. scale
to improve the accuracy of integration the autonomy of the system is used and the system is reduced to a single eq db/da=f(a,b)
due to nonmonotonicity of solution, it is necessary to change the integration variable $a<->b$ at an intermediate point
relative accuracy of integration $\sim 10^{-6}$
time of solution $0.006 \mathrm{sec}(3 \mathrm{GHz} \mathrm{CPU})$

$$
x=\log r, a=\log A, b=\log B
$$

The physical meaning of the constants

$c_{3}=u_{\mu} u^{\mu}=-1,0,+1 \quad$ matter type: massive, null, tachyonic (M/N/T-RDM) solution in strong fields $(A \ll 1)$ does not depend on matter type, since the term $c_{3} A$ becomes small
solution in weak fields (A~1) depends on combination of constansts:

$$
\begin{aligned}
& c_{4}=4 c_{1} c_{2}, c_{5}=c_{3} / c_{2}^{2} \\
& c_{6}=c_{4} \sqrt{1+c_{5}}, c_{7}=c_{4} / \sqrt{1+c_{5}}
\end{aligned}
$$

$$
\epsilon=\left(c_{6}+c_{7}\right) / 2 \quad \text { parameter, defining asymptotic gravitating density }\left(\rho_{\mathrm{eff}}+\mathrm{p}_{\mathrm{eft}}\right)
$$

of dark matter flow

$$
\rho_{\mathrm{eff}}=c_{4} /\left(2 r^{2}\right) / \sqrt{1+c_{5}}, \quad p_{\mathrm{eff}}=c_{4} /\left(2 r^{2}\right) \cdot \sqrt{1+c_{5}}
$$

directly measurable parameter: $\varepsilon=(\mathrm{v} / \mathrm{c})^{2}$, where v is the orbital velocity of stars at large distances from the galaxy center, for Milky Way $v \sim 200 \mathrm{~km} / \mathrm{s}, \varepsilon=4 \times 10^{-7}$

Comparison of RDM model with parameters of Milky Way

model parameters	$\epsilon=4 \cdot 10^{-7}, r_{0}=1.2 \cdot 10^{10} \mathrm{~m}$	\100kpc DM domination Sun-Earth 8.3kpc
a border of the galaxy (starting point)	$\begin{gathered} r_{1}=3.1 \cdot 10^{21} \mathrm{~m}, \\ a_{1}=0, b_{1}=2.67 \cdot 10^{-7} \end{gathered}$	
data at Earth location	$\begin{gathered} r_{E}=2.57 \cdot 10^{20} \mathrm{~m} \\ a_{E}=-2 \cdot 10^{-6}, b_{E}=b_{1}+4 \cdot 10^{-11} \end{gathered}$	
switch from DM-dominated to Keplerian regime	$\begin{gathered} r_{1 a}=1.5 \cdot 10^{16} \mathrm{~m} \\ a_{1 a}=-1.05 \cdot 10^{-5}, b_{1 a}=9.91 \cdot 10^{-7} \end{gathered}$	S-stars Kepl.orbits $10^{13-15} \mathrm{~m}$
switch to Schwarzschild regime	$\begin{gathered} r_{1 b}=3.33 \cdot 10^{10} \mathrm{~m} \\ a_{1 b}=-b_{1 b}-2.06 \cdot 10^{-5}, b_{1 b}=0.404 \end{gathered}$	circular orbits become instab
begin of the supershift	$\begin{gathered} r_{2}=1.11 \cdot 10^{10} \mathrm{~m}, \\ a_{2}=-14.79, b_{2}=13.40 \end{gathered}$	gravit. radius A
switch of integration $b(a) \rightarrow a(b)$	$\begin{gathered} r_{2 a}=r_{2}-1.2 \cdot 10^{4} \mathrm{~m} \\ a_{2 a}=-16.79, b_{2 a}=12.54 \end{gathered}$	supershift
end of the supershift	$\begin{gathered} r_{3}=6.8 \cdot 10^{6} \mathrm{~m} \\ a_{3}=b_{3}-14.79, b_{3}=-1.33 \cdot 10^{6} \end{gathered}$	
redshift at the minimal radius (Planck length)	$\begin{gathered} r_{P l}=1.62 \cdot 10^{-35} \mathrm{~m}, \\ a_{P l} / a_{3}-1=-7.19 \cdot 10^{-5} \end{gathered}$	

=> supershift remains red until Planck length (no UV-catastrophe)

Comparison of RDM model with parameters of Milky Way

The RDM-stars as black and white holes

- RDM-stars have both properties of black and white holes, as they are permanently absorb and emit spherical shells of dark matter
- T-symmetric stationary solution analogous to Planck stars with permanently repeating QG-bounce
- also have negative mass in the center

$$
M=r / 2\left(1-B^{-1}\right)
$$

Misner-Sharp mass
(1) decreases with decreasing r, when positive mass layers removed from the star
(2) when approaching the horizon ($2 \mathrm{M}=r$), decreases faster $2 \mathrm{M}<r$, the horizon is erased ...
(3) decreases very rapidly in supershift region, mass inflation (Hamilton, Pollack 2005)
=> central value $\mathrm{M}(0)<0$

Negative masses

- Energy conditions (Einstein, Hawking): there are no negative
- masseft (1985): "... negative mass solutions unattractive to work with but perhaps they cannot be completely excluded."
- Visser (1996): negative masses are needed to create the wormholes and time machines
- Rovelli-Vidotto (2014), Barceló et al. (2015): negative masses can be obtained effectively by a slight excess of Planck density
- Specifically, for RDM-stars: relative excess of Planck density $\Delta \rho / \rho_{\mathrm{p}} \sim 3 \varepsilon$ provides a hydrostatic equilibrium for galactic dark matter halo; $\varepsilon=4 \times 10^{-7}$ for MW

Experiment: fast radio bursts

Fast Radio Bursts (FRB), powerful flashes of extragalactic origin

Big Scanning Antenna (BSA), Pushchino, Russia, registered 3 FRB of lowest frequency 111MHz

typical signature of FRB (the first registered flash FRB010724, Lorimer et al. 2007, frbcat.org) the slope indicates high dispersion shift (extragalactic distance)

- reported totally 84 FRB sources, 2 of which are repeating (data of 16.06.19)
- duration: 0.08 msek (fast) -5sek, frequency: $111 \mathrm{MHz-8GHz}$ (radio band)
- typical isotropic energy of the flash $\sim 10^{32-34} \mathrm{~J}$, corresp. $\mathrm{E}=\mathrm{mc}^{2}$ for a small asteroid
- the nature of bursts is currently unknown

Experiment: fast radio bursts

- FRB generation mechanism in RDM model
- object of an asteroid mass falls onto the RDM-star
- grav. field acts as an accelerator with super-strong ultrarelativistic factor $\gamma \sim 10^{49}$
- nucleons N composing the asteroid enter in the inelastic collisions with particles X forming the Planck core, producing the excited states of a typical energy $E\left(X^{*}\right) \sim \operatorname{sqrt}\left(2 m_{x} E_{N}\right)$
- high-energy photons formed by the decay of X^{*} $\mathrm{E}(\gamma, \mathrm{in}) \sim \mathrm{E}\left(\mathrm{X}^{*}\right) / 2$ are subjected to super-strong red shift factor γ^{-1}
- outgoing energy $E(\gamma$, out $) \sim \operatorname{sqrt}\left(m_{x} m_{N} /(2 \gamma)\right)$, wavelength $\lambda_{\text {out }}=\operatorname{sqrt}\left(2 \lambda_{x} \lambda_{N} \gamma\right)$, where $\lambda_{x} \sim 1.6 \times 10^{-35} \mathrm{~m}$ (Planck length), $\lambda_{N} \sim 1.32 \times 10^{-15} \mathrm{~m}$ (Compton wavelength of nucleon)
- dout $=2(2 \pi)^{1 / 4}$ sqrt $\left(r_{s} \lambda_{N}\right) / \varepsilon^{1 / 4}$, for Milky Way parameters $r_{s}=1.2 \times 10^{10} \mathrm{~m}, \varepsilon=4 \times 10^{-7}, \lambda$ out $=0.5 \mathrm{~m}$, vout $=600 \mathrm{MHz}$
- falls in the observed range 111MHz-8GHz

- a common mechanism of stimulated emission (aka LASER) generates a short pulse of coherent radiation

Experiment: rotation curves of galaxies

- universal rotation curve (URC, Salucci et al. 1995-2017)
- represents averaged exp. rotation curves of >1000 galaxies
- before averaging: galaxies are subdivided to bins over magnitude mag
- curves $\mathrm{V}(\mathrm{R}, \mathrm{mag})$ are normalized to the values at optical radius: $\mathrm{V} / \mathrm{Vopt}, \mathrm{R} / \mathrm{Ropt}$
- the averaging smoothes the individual characteristics of the curves (loc. minima / maxima)
- detailed modeling of rotation curves in RDM model
- based on the assumptions: (1) all black holes are RDM-stars;
(2) their density is proportional to the concentration of the luminous matter in the galaxy
- in this case, the dark matter density is given by the integral (Kirillov, Turaev 2006)

$$
\rho_{d m}(x)=\int d^{3} x^{\prime} b\left(\left|x-x^{\prime}\right|\right) \rho_{l m}\left(x^{\prime}\right), \quad b(r)=1 /\left(4 \pi L_{K T}^{\text {constant }}\right.
$$

$$
\sim \delta(z) \exp \left(-r / R_{D}\right), R_{o p t}=3.2 R_{D} \longleftarrow \begin{aligned}
& \text { optical radius of the galaxy } \\
& \text { encompassing } 83 \% \text { of the light }
\end{aligned}
$$

Experiment: rotation curves of galaxies

The physical meaning of KT-integral: every element of luminous matter (i.e., RDM-stars contained in it) gives additive contributions to dark matter density, mass, gravitational field, orbital velocity, gravitational potential...

$$
\begin{aligned}
& \rho_{d m}(r)=M_{l m} /\left(4 \pi L_{K T}\right) / r^{2}, \\
& M_{d m}(r)=4 \pi \int_{0}^{r} d r^{\prime} r^{\prime 2} \rho_{d m}\left(r^{\prime}\right)=M_{l m} r / L_{K T}, \\
& a_{r, d m}=G M_{d m}(r) / r^{2}=G M_{l m} /\left(r L_{K T}\right), \\
& v_{d m}^{2}=G M_{d m}(r) / r=G M_{l m} / L_{K T},
\end{aligned}
$$

LKT is the distance at which the mass of dark matter equals to the mass of the luminous matter, to which it is coupled

Experiment: rotation curves of galaxies

the integrals are evaluated analytically and lead to the following model:

$$
\begin{aligned}
& v_{c e n t e r, l m}^{2}=\alpha_{0} v_{o p t}^{2} R_{o p t} / r, v_{c e n t e r, d m}^{2}=\alpha v_{o p t}^{2}, \\
& v_{d i s k, l m}^{2}=\beta v_{o p t}^{2} F_{d i s k}\left(r / R_{D}\right) / F_{d i s k}(3.2) \\
& F_{d i s k}(x)=x^{2}\left(I_{0}(x / 2) K_{0}(x / 2)-I_{1}(x / 2) K_{1}(x / 2)\right), \\
& v_{d i s k, d m}^{2}=\varnothing v_{o p t}^{2} F_{d i s k, d m}\left(r / R_{D}\right) / F_{d i s k, d m}(3.2), \\
& F_{d i s k, d m}(x)=1-e^{-x}(1+x), R_{o p t}=3.2 R_{D} \\
& v^{2}=v_{\text {center }, l m}^{2}+v_{c e n t e r, d m}^{2}+v_{d i s k, l m}^{2}+v_{d i s k, d m}^{2} \\
& v_{o p t}^{2}=v^{2}\left(r \rightarrow R_{o p t}\right), \alpha_{0}+\alpha+\beta+\gamma=1,
\end{aligned}
$$

the contributions are separated for the galactic center (unresolved), disk, visible and dark matter; I_{n}, K_{n} - modified Bessel functions; coeff. at basis shapes selected as fitting parameters

Universal Rotation Curve

Data: Persic, Salucci 1995
Fit: RDM-model

Experiment: rotation curves of galaxies

- rotation curve for the Milky Way in a large range of distances (Grand Rotation Curve, GRC, Sofue et al. 2009-2013)
- shows individual structures typical for a particular galaxy (MW)
- structures are clearly visible in log.scale (central black hole, the inner, outer bulges, disk, dark matter halo, the background contribution)
- in the fitting procedure each structure is represented by its own basis function
- we consider several scenarios with fixed coupling constants of dark matter to separate structures

$$
\begin{aligned}
& v_{b h}^{2}=G_{m} M_{b h} / r, G_{m}=4.3016 \cdot 10^{-6}(\mathrm{~km} / \mathrm{s})^{2}\left(\mathrm{kpc} / M_{\odot}\right), \\
& v_{s p h, i}^{2}=G_{m} M_{i} / r \cdot F_{s p h}\left(r / a_{i}\right), i=1,2 \text {, } \\
& F_{s p h}(x)=1-e^{-x}\left(1+x+x^{2} / 2\right), \\
& v_{d i s k}^{2}=G_{m} M_{d i s k} /\left(2 R_{D}\right) \cdot F_{d i s k}\left(r / R_{D}\right) \text {, } \\
& F_{d i s k}(x)=x^{2}\left(I_{0}(x / 2) K_{0}(x / 2)-I_{1}(x / 2) K_{1}(x / 2)\right) \text {, } \\
& v_{l m}^{2}=v_{b h}^{2}+v_{s p h 1}^{2}+v_{s p h 2}^{2}+v_{d i s k}^{2}, \quad \text { the fitting parameters: coefficients at } \\
& v_{d m, b h}^{2}=G_{m} M_{b h} \lambda_{b h} / L_{K T} \text {, } \\
& v_{d m, s p h, i}^{2}=G_{m} M_{i} \lambda_{s p h, i} / L_{K T} \cdot F_{d m, s p h}\left(r / a_{i}\right), i=1,2 \text {, } \\
& F_{d m, s p h}(x)=\left(6 x+\left(3-3 x+x^{2}\right) e^{x} E i(-x)\right. \\
& \left.-\left(3+3 x+x^{2}\right) e^{-x} E i(x)\right) /(4 x), \\
& v_{d m, d i s k}^{2}=G_{m} M_{d i s k} \lambda_{d i s k} / L_{K T} \cdot F_{d m, d i s k}\left(r / R_{D}\right) \text {, } \\
& F_{d m, d i s k}(x)=1-e^{-x}(1+x), \\
& v_{d m, s u m}^{2}=v_{d m, b h}^{2}+v_{d m, s p h 1}^{2}+v_{d m, s p h 2}^{2}+v_{d m, d i s k}^{2} \text {, } \\
& v_{d m, c u t}^{2}=v_{d m, s u m}^{2}\left(r \rightarrow r_{c u t}\right) \cdot r_{c u t} / r, v_{b g r}^{2}=4 \pi G_{m} \rho_{0} r^{2} / 3 \text {, } \\
& v_{d m}^{2}=\left(\left(v_{d m, \text { sum }}^{2}\right)^{p}+\left(v_{d m, c u t}^{2}\right)^{p}\right)^{1 / p}, \quad \text { background contribution, similar to uniform } \\
& \text { cosmological distr. (Hubble flow), with a } \\
& v^{2}=v_{l m}^{2}+v_{d m}^{2}+v_{b g r}^{2} . \\
& \text { dark matter halo is cut on the } \\
& \text { outer radius rcut, analogous to } \\
& \text { termination shock phenomenon } \\
& \text { at the boundary of Solar sys., } \\
& \text { where solar wind stops meeting } \\
& \text { the uniform interstellar env. } \\
& v_{d m, s u m}^{2}=v_{d m, b h}^{2}+v_{d m, s p h 1}^{2}+v_{d m, s p h 2}^{2}+v_{d m, d i s k}^{2} \text {, } \\
& v_{d m, c u t}^{2}=v_{d m, s u m}^{2}\left(r \rightarrow r_{c u t}\right) \cdot r_{c u t} / r, v_{b g r}^{2}=4 \pi G_{m} \rho_{0} r^{2} / 3 \text {, } \\
& v_{d m}^{2}=\left(\left(v_{d m, s u m}^{2}\right)^{p}+\left(v_{d m, c u t}^{2}\right)^{p}\right)^{1 / p}, \\
& v^{2}=v_{l m}^{2}+v_{d m}^{2}+v_{b g r}^{2} .
\end{aligned}
$$

Experiment: rotation curves of galaxies

Experiment: rotation curves of galaxies

Experiment: rotation curves of galaxies

Experiment: rotation curves of galaxies

GRC: fitting results, central values of parameters*

par	s 1	s 2	s 3
$M_{\text {bh }}$	3.6×10^{6}	3.6×10^{6}	3.2×10^{6}
M_{1}	5.5×10^{7}	5.2×10^{7}	3.6×10^{7}
a_{1}	0.0041	0.0039	0.0036
M_{2}	9.7×10^{9}	8.6×10^{9}	8.2×10^{9}
a_{2}	0.13	0.13	0.13
$M_{\text {disk }}$	3.2×10^{10}	2.7×10^{10}	3.5×10^{10}
R_{D}	2.4	2.5	2.8
$L_{K T}$	7.0	6.3	12.0
$r_{\text {cut }}$	58	45	53
$M_{d m}\left(r_{\text {cut }}\right)$	2.7×10^{11}	2.5×10^{11}	2.6×10^{11}
ρ_{0}	646	653	649

${ }^{*}$ masses in M_{\odot}, lengths in $k p c$, density in $M_{\odot} / k p c^{3}$
approx equal for all scenarios
$5 x$ greater than critical density (local overdensity)

Combined analysis of FRBs and RCs

- two solutions for FRB sources: supermassive and stellar BH
- supermassive BH is preferable: high beam efficiency, high scatter broadening
- (Luan, Goldreich, 2014; Masui et al. 2015) (arXiv:1401.1795, arXiv:1512.00529) also attribute FRB source location to galactic nuclei
(a) Vout=111MHz, (b) Vout=8GHz, (c) MWs2,
(d) MWs3, (e) MWmax for V(smbh,dm) $=100 \mathrm{~km} / \mathrm{sec}$,
(f) $\varepsilon=4 \times 10^{-7}$ div to $\mathrm{Nsbh}=10^{9}$, (g) same with $\mathrm{Nsbh}=10^{6}$
(Wheeler, Johnson, 2011)(arxiv:1107.3165)

Combined analysis of FRBs and RCs

FRB adjustment factors:
earlier onset of QG effects: $\rho \rightarrow \rho_{\mathrm{p}} / \mathrm{s}_{1}$ nucleon fragmentation factor: $\lambda_{N} \rightarrow \lambda_{N} / S_{2}$
$s_{1}=1, s_{2}=1 / 3$ (constituent quarks)
(a) Vout=111MHz, (b) Vout=8GHz, (c) MWs2,
(d) MWs3, (e) MWmax for V(smbh,dm) $=100 \mathrm{~km} / \mathrm{sec}$,
(f) $\varepsilon=4 \times 10^{-7}$ div to $\mathrm{Nsbh}=10^{9}$, (g) same with $\mathrm{Nsbh}=10^{6}$
(Wheeler, Johnson, 2011)(arxiv:1107.3165)

Combined analysis of FRBs and RCs

FRB adjustment factors:
earlier onset of QG effects: $\rho \rightarrow \rho_{\mathrm{p}} / \mathrm{s}_{1}$ nucleon fragmentation factor: $\lambda_{N} \rightarrow \lambda_{N} / s_{2}$
$\mathrm{s}_{1}=10, \mathrm{~s}_{2}=56$ (iron nuclei)
=> RDM descriptions of FRBs and RCs are compatible
(a) Vout=111MHz, (b) Vout=8GHz, (c) MWs2,
(d) MWs3, (e) MWmax for V(smbh,dm) $=100 \mathrm{~km} / \mathrm{sec}$,
(f) $\varepsilon=4 \times 10^{-7}$ div to $\mathrm{Nsbh}=10^{9}$, (g) same with $\mathrm{Nsbh}=10^{6}$
(Wheeler, Johnson, 2011)(arxiv:1107.3165)

Questions

Q1: Can Tully-Fisher relation be explained in RDM model?
MIm \sim Vmax $^{\beta}, \beta=4.48 \pm 0.38$ for stellar mass, $\beta=3.64 \pm 0.28$ for total baryonic mass (Torres-Flores et al., 2011) (arXiv 1106.0505)

Hyp: a galaxy is formed by a collapse of matter in Rcut-sphere, LM -> to the central region, DM -> to RDM configuration
$=>\mathrm{Mlm} / \mathrm{Mdm}($ Rcut $)=\mathrm{LkT} /$ Rcut $=\Omega \mathrm{lm} / \Omega \mathrm{dm}=\mathrm{x} \sim 0.19$
Check: $x=\{0.12,0.14,0.23\}$ for scenarios $1,2,3$ (ok)
Vmax ${ }^{2}=\mathrm{G}(\mathrm{Mlm}+\mathrm{Mdm}($ Rcut $) /$ Rcut $=\mathrm{G}(1+\mathrm{x}) \mathrm{Mlm} /$ Rcut
MIm~Rcut ${ }^{\mathrm{D}}, \mathrm{D}=3$, classical uniform distribution
D~2, fractal distribution (Mandelbrot 1997;
Labini, Montuori, Pietronero 1997; Kirillov, Turaev 2006)

Vmax ${ }^{2} \sim$ Rcut $^{\mathrm{D}-1} \sim \mathrm{Mlm}^{(\mathrm{D}-1) / \mathrm{D}}, ~ M I m \sim \operatorname{Vmax}^{2 \mathrm{D} /(\mathrm{D}-1)}$
$\beta=2 D /(D-1), \beta=3$ for $D=3, \beta=4$ for $D=2$
Q2: is it a coincidence that LKT/Ropt=\{0.9,0.8,1.3\} ~ 1, i.e., Mdm(Ropt)~MIm, for MW?

Questions

"cuspy", RDM model with unresolved GC
here GC resolved:

GRC exp data show no tendency $\mathrm{v}->0$ till central BH , non-cored?

URC differences in zero bin

Questions

hot radial dark matter produces the same exp observable rotation curves as cold isotropic dark matter, the difference is in switching on/off transversal pressure components, influencing solutions of field equations (proof in arXiv:1811.03368)

GRC outer part fitted by different profiles equally good (can the scatter of data be reduced?)

The distributions out of the galactic plane
integrable ρ_{DM}-singularity, the memory of $\rho_{\mathrm{LM}} \sim \delta(\mathrm{z})$ in KT-integral (idealization)

aspherical DM-halo, becomes spherical at large distances (consequences for lensing experiments?)

$$
L_{K T} / R_{D}=3
$$

Conclusion

- we have considered a number of astrophysical models: dark stars, wormholes, white holes, Planck stars ...
- considered in more detail the model of RDM-stars
- compared the model with experiment:
fast radio bursts (FRB): the model correctly predicts the range of frequencies, the energies, the coherence properties of the signal
galactic rotation curves are fitted well by the model prediction: the universal rotation curve describing the spiral galaxies of the general form and the individual rotation curve, describing the Milky Way galaxy in a wide range of distances.

